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Big Picture
Defining Barycentric Coordinates

super simple, you already know them

Entending them to Edges, Faces, Tets
called Whitney basis functions

Deriving a whole Discrete Calculus
as the one you know, but on mesh 

Scared?
Don’t be: it’s only numbers on mesh elmts!
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Barycentric Coordinates
You already know barycentric coordinates:

given (d+1) point in Rd, 
way to locate point within their convex hull
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What’s the Point?
Nice, important properties

Möbius invented it in 1827 – “mass points”
under Gauß’s supervision–got to be good

coordinate-free geometry
global vs. relative positioning
storing numbers on vertices
intrinsic; indpt on dim. of ambient space
affine invariant v1
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Computing Barycentric Coords

Question:
Given a d-simplex, find the bary. coords bi [x] 

of an inside point x for each vertex vi such as:

Unique solution (in any dim.):

Try it on a segment
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Barycentric Basis Functions
In 1D:
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Linear Finite Elements…

linear interpolation

vi
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Extending it to Other Shapes?
What about polygons/polytopes?

Barycentric coordinates for polytopes
ouch, not unique anymore…
additional requirements?

− smoothness of basis functions
− tensor product (square→bilinear)
− face restriction (should fit (n-1)D bc)
− simplicity of evaluation…

? ? ?
?
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Generalyzed B. Coords [Warren et al 04]

For convex polytope, simple expression

volume of normal cone

prod. of distances to adj. faces

bi[x] = wi[x] / ∑wj[x] , with:

Rational basis fcts of degree (F—n)
(because zero on (F—n) lines)

that extends to smooth domains!

vj
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Other Types of GBC

Other approaches:
mean value coordinates in 2D and 3D

Floater, 2003/2005, positive for any star-shaped polygons

Sibson’s – a bit complicated to compute

blend of various coordinates
Hormann et al., 2003

for any 2D polygon [Malsch et al.]
See new paper by Ju et al. this year

None reproduces tensor prod. or generalizes to nD
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So What?
What did we accomplish?

discrete scalar fields
discrete sampling = values on nodes of a mesh
spatial interpolation to allow arbitrary evals

Where to Go from Here?
what about vector fields?
what about computations?

gradient, curl, div, laplacian, you-name-it

keeping them mesh-intrinsic all the way?
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Intrinsic Calculus on Meshes
We can bootstrap a whole discrete calculus!

using only values on simplices
and if needed, interpolation in space
preview:

deep roots in mathematics
algebraic topology, differential geometry

but very simple to implement and use

point-based
scalar field

cell-based
scalar field

edge-based
vector field

face-based
vector field

∇ ×∇ •∇
ddd
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Discrete Differential Quantities
Hinted in the talks before…

they “live” at special places, as distributions
Gaussian curvature at vertices ONLY
mean curvature at edges ONLY

they can be handled through integration
integration calls for k-forms (antisymmetric tensors)

− objects that beg to be integrated  (ex:               )         
k-forms are evaluated on kD set
− 0-form is evaluated at a point, 

1-form at a curve, etc…

∫ dxxf )(

that’s a 1-form
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nr

Forms You Know For Sure
Scalar functions: 0-forms
Digital Images: 2-forms

incident flux on sensors (W/m2)
Magnetic Field B: 2-form

only measurement possible:
any physical flux is a 2-form too

Elctrical Force E: 1-form 
any physical circulation is a 1-form too

notion of pseudo forms—see notes

∫∫ dAnB rr.

∫ dltE
rr
. t

r
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Exterior Calculus of Forms
Foundation of calculus on smooth manifolds

Historically, purpose was to extend div/curl/grad
Poincaré, Cartan, Lie, … 

Basis of differential and integral computations
highlights topological and geometrical structures
modern diff. geometry, Hodge decomposition, … 

A hierarchy of basic operators are defined:
d, *, ∧, b, #, iX , LX

See [Abraham, Marsden, Ratiu] , ch. 6-7
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Discrete Exterior Calculus
Simplicial complex only spatial structure

can be 1-, 2-, or 3-manifold, flat or not

Idea: Sampling Forms on Each Simplex!
“extends” the idea of point-sampling
use also the “dual” of each simplex

Primal k-simplex

Dual k-cell

0-simplex 1-simplex 2-simplex 3-simplex

Dual

Primal
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Discrete Differential Forms
Discrete k-form = values on each kD set

primal discrete k-form: value on each k-simplex
dual discrete k-form: value on each dual (n-k)-cell
the rest is defined through linearity

in math terms: chains pair with cochains
(natural pairing = integration)

in CS terms: k-form = vector of values
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Notion of Exterior Derivative
Stokes/Green/{…} theorem:

so d and ∂ are dual    (                         )
Implementation? 

As simple as an incidence matrix!
ex: d(1-form)=incidence matrix of edges & faces

Bean counting: [|F|x|E|] (|E|) = (|F|)

ωσωσ ,d, ∂=

∫ −=
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turns a integral 
into a boundary integral
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Exterior Derivative
Let’s try

No “metric” needed! (no size measurement)

Try d, then d on an arbitrary form…
zero; why?
because
good: div(curl)=curl(grad)=0 automatically

value?

0=∂∂ o

∂ (         )=

Careful w/ orientation!
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Hodge Star
Take forms to dual complex (and vice-versa)

switch values btw primal/dual

“diagonal” hodge star

again, a simple (diagonal) matrix

now the metric enters…
Hodge star defines accuracy

order of approximation of the metric 

common “average” 
value
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Discrete deRham Complex
Discrete calculus through linear algebra:

simple exercise in matrix assembly
all made out of two trivial operations:

summing values on simplices (d/∂)
scaling values based on local measurements (  )

point-based
scalar field

cell-based
scalar field

edge-based
vector field

face-based
vector field

cell-based
scalar field

point-based
scalar field

face-based
vector field

edge-based
vector field

∇ ×∇ •∇

×∇ ∇•∇
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A Step Back
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Interpolating Discrete Forms
Whitney basis fcts to interpolate forms

0-forms (functions)
“hat” functions

1-forms (edge elements!)
Whitney forms:
basis of 1-forms since             0 on edges ≠ (i,j)

2-forms: face elmts
3-forms: constant per tet

Higher order bases for smoother interp.

think ∇
for computations

also a fct of    and             φ φ∇
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What We’ll be Able To Do
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Why DEC is New
Not quite like:

Finite Elements
use nodes and cells only
tries to enforce local relationships globally well

Finite Differences
sorta local polynomial fitting, loses invariants

Finite Volumes
use cells and nodes only
good at local relations, often bad at global ones
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Why DEC is Limited
It Does Not Substitute For:

Numerical Analysis
accuracy and convergence rate 

still need careful study

Good Meshing Tools
bad mesh? bad results, guaranteed…
stay tuned; we’ll address the issue in the last talk

Good hacking skills
see Building your own DEC at home in notes
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Why DEC is Good
If You Ask Me:

basic discrete operators, consistently derived 
easy to compute given a discrete mesh
separating topology from geometry
− helps narrowing down where accuracy is lost

conservation laws can be preserved exactly

preserving structures at the discrete level!
applicable to a variety of problems
good foundations for further studies

can be used as basis for ‘simplex sampling’
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Other Related Research Areas
Variational Integrators

principle of least-action is crucial 
motion is a geodesic if we use action as “metric”
preserve invariants and symmetries

“not accurate?”: urban legend, simply untrue
Discrete Differential Euclidean Geometry

it all ties up through the use of connections
but it will be for another day…

Geometric Algebra
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Take-Home Message
Geometric Approach to Computations

discrete setup acknowledged from the get-go
choice of proper habitat for quantities
whole calculus built using only:

boundary of mesh elements 
scaling by local measurements

preserving structural indentities
they are not just abstract concepts:

they represent defining symmetries


