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to Whitney Forms:

Turn Your Mesh into a
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Big Picture

Defining Barycentric Coordinates
m super simple, you already know them

Entending them to Edges, Faces, Tets
m called Whitney basis functions

Deriving a whole Discrete Calculus
m as the one you know, but on mesh

Scared?
m Don’t be: it’s only numbers on mesh elmts!
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Barycentric Coordinates

You already know barycentric coordinates:
® given (d+1) point in R,
® way to locate point within their convex hull
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What’s the Point?

Nice, important properties
® Mobius invented it in 1827 — “mass points”
> under Gau’s supervision—got to be good
m coordinate-free geometry
> global vs. relative positioning

» storing numbers on vertices
»> intrinsic; indpt on dim. of ambient space
» affine invariant e
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Computing Barycentric Coords

Question:
Givena d-simplex; find the bary. coords b; [X]
of an inside point X for eachvertex v; such as:

bx] =0 z b[x] =1 2 v bx] =x

Unique solution (in any dim.): v
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Barycentric Basis Functions

In 1D:
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Linear Finite Elements...
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Extending it to Other Shapes?

What about polygons/polytopes?
~ 98
Barycentric coordinates for polytopes

® ouch, not unique anymore...

m additional requirements?

- smoothness of basis functions
- tensor product (square—bilinear)
- face restriction (should fit (n-1)D bc)
- simplicity of evaluation...
Discrete Differential Geometry: An Applied Introduction
ACM SIGGRAPH 2005 Course ,

Other Types of GBC
2 Other approaches:

® mean value coordinates in 2D and 3D
> Floater, 2003/2005, positive for any star-shaped polygons

m Sibson’s - a bit complicated to compute

m blend of various coordinates
» Hormann et al., 2003

m for any 2D polygon [Malsch et al |
® See new paper by Ju et al. this year

None reproduces tensor prod. or generalizes to nD
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Generalyzed B. Coords ...

For convex polytope, simple expression
Dix] = wi[x] / 2w [x] , with:

;'.- | (l(‘T(n“ ..... n_;,n]|
- wilx) = =
o | ) e

— | prod. of distances to adj. faces |
Rational basis fcts of degree (F-n) —
(because zero on (F-n) lines) P ?—.

that extends to smooth domains! ’ i' /”’_{\ v
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So Whart?
What did we accomplish?

m discrete scalar fields
> discrete sampling = values on nodes of a mesh

> spatial interpolation to allow arbitrary evals

Where to Go from Here?
® what about vector fields?
® what about computations?
» gradient, curl, div, laplacian, you-name-it
m keeping them mesh-intrinsic all the way?
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Intrinsic Calculus on Meshes

We can bootstrap a whole discrete calculus!
® using only values on simplices = /| T
m and if needed, interpolation in space

B preview:
point-based \ edge-based  V x facebased Vo cell-based
scalar field vector field d scalar field

d vector field d
® deep roots in mathematics
> algebraic topology, differential geometry

m but very simple to implement and use
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Discrete Differential Quantities

Hinted in the talks before...
m they “live” at special places, as distributions
» Gaussian curvature at vertices ONLY
> mean curvature at edges ONLY
m they can be handled through integration

> integration calls for k-forms nisymmetric tensors)
- objects that beg to be integrated (CXII f(x)dx)

» k-forms are evaluated on kD set m

- 0-form is evaluated at a point,
1-form at a curve, etc...
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Forms You Know For Sure

Scalar functions: 0-forms
Digital Images: 2-forms E
® incident flux on sensors (W/m?
Magnetic Field B: 2-form ﬁ/i ;/ .

® only measurement possible: [[ BfidA Y
® any physical flux is a 2-form too \2\'/

Elctrical Force E 1-form [Efd N
® any physmal circulation is a I-form foo ‘\‘{\

\\HOUDH of pseudo forms—see notes
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Discrete Exterior Calculus

Simplicial complex only spatial structure
> can be 1+, 2-, or 3-manifold, flat or not
. / ' 7
[smpes]  [fompex]  [Fomplex]  [Foimplex]
Idea: Sampling Forms on Fach Simplex!
> “extends” the idea of point-sampling
> use also the “dual” of each simplex

= Dual @ @ & & Primal k-simplex
= Primal g' @ & d._»\ Dual k-cell
- "'
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Exterior Calculus of Forms

Foundation of calculus on smooth manifolds

= Historically, purpose was to extend div/curl/grad
» Poincaré, Cartan, Lie, ...

® Basis of differential and integral computations
> highlights topological and geometrical structures
» modern diff. geometry, Hodge decomposition, ...

m A hierarchy of basic operators are defined:
> d, % A b # iy, Ly

m Sce [Abraham, Marsden, Ratiu] , ch. 6-7
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Discrete Differential Forms

Discrete k-form = values on each kD set

= primal discrete k-form: value on each k-simplex

® dual discrete k-form: value on each dual (n-k)-gell
the rest is defined through linearity R e——

J» o= Z/J’ so same cardinality
NN

U oj
in math terms: chains pair w1th COChall‘lS

O (natural pairing - integration)
inCS terms\k form = vector of yalues |
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Notion of Exterior Derivative
® Stokes/Green/{...} theorem: Idw J-a)

dF =F(b)-F(a) e oA r
I it AN \x turns
% dF b AT W { M.

m sodand 0 are dual ((o,dw)=(00,0)
® Implementation? BT WANLN
> As simple as an incidence matrix!
> ex: d(1-form)-incidence matrix of edges & faces
Bean counting: [|F|x|E[] (|E]) = (|E|)

into a bou
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Exterior Derivative

Let’s try

value?

45 Careful w/ or|entat|on'
o( /\

ih

~34

® No “metric” needed! (no size measurement)
® Try d, then d on an arbitrary form... s

> zero; why?

» because 606 =0
» good: div(curl)=curl(grad)-0 automatically
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Hodge Star

Take forms to dual complex (and vice-versa)
m switch values btw primal/dual
x: QP Q1P
m “diagonal” hodge star
LI
|*Gp‘ *GP |Gp| cP
> again, a simple (diagonal) matrix

® now the metric enters...

m Hodge star defines accuracy
» order of approximation of the metric
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Discrete deRham Complex

Discrete calculus through linear algebra:

point-bgsed v edge-hased  V x ace-based Vo ciﬂ/bascd
scalAHEGEM el 0l ﬁ’d&ma—‘F’ Ichowmeld

Vi
I dy -od) -1y -1
*H‘*u , *; i*{ , *_‘l F-;) , *3“[,’,‘

dual dy 1al d; util d; du
cell Gt e facghased  ~=— c{i»ba.\cd -+—F o, hased
scal fﬁéﬁ“<— veéi-, G -~ vjéi;ﬂl‘ﬁém -— sz%&lf?eld

® simple exercise in matrix assembly
® all made out of two trivial operations:
» summing values on simplices (d/d)
> scaling values based on local measurements ()
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A Step Back

Big Picture
Defining Barveentric Coordinates J

B super sumple, vou already know them

Entending them to Edges. Faces. Tels
5, -TelS
® called Whitney basis functions
Deriving a whole Diserere Caleulus ,

B a3 the one vou know, but simpler!

Scared
o Don't

o £ 's ey sinhers on nresh el !
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Interpolating Discrete Forms

Whitney basis fcts to interpolate forms
® O-forms (functions)  “"AL

> “hat” functions &
o) =0

m 1-forms (edge elements!)
> Whitney forms: ¢;; = oido;— o;de ~ LLrompuation:
> basis of 1-forms since = ¢;(ey) —on edges # (i,j)

m 2-forms: face elmts

m 3-forms: constant per tet

Higher order bases for smoother interp.
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What We’ll be Able To Do
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Why DEC is New
Not quite like:

® Finite Elements

> use nodes and cells only

> tries to enforce local relationships globally well
® Finite Differences

> sorta local polynomial fitting, loses invariants
® Finite Volumes

> use cells and nodes only

> good at local relations, often bad at global ones
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Why DEC is Limited

It Does Not Substitute For:
® Numerical Analysis

> accuracy and convergence rate
still need careful study

® Good Meshing Tools
> bad mesh? bad results, guaranteed...

> stay tuned; we'll address the issue in the last talk
® Good hacking skills

> see Building your own DEC at home in notes
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Why DEC is Good

If You Ask Me:

m basic discrete operators, consistently derived
> easy to compute given a discrete mesh
> separating topology from geometry

- helps narrowing down where accuracy is lost

> conservation laws can be preserved exactly

m preserving structures at the discrete level!
» applicable to a variety of problems
> good foundations for further studies

® can be used as basis for ‘simplex sampling’
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Other Related Research Areas

Variational Integrators
m principle of least-action is crucial
> motion is a geodesic if we use action as “metric”
> preserve invariants and symmetries
B “not accurate?” urban legend, simply untrue
Discrete Differential Euclidean Geometry
m it all ties up through the use of connections
® but it will be for another day...
| Geometric Algebra
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Take-Home Message

Geometric Approach to Computations

m discrete setup acknowledged from the get-go
m choice of proper habitat for quantities
m whole calculus built using only:

> boundary of mesh elements

> scaling by local measurements
m preserving structural indentities

> they are not just abstract concepts:

they represent defining symmetries
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